Utilizing Spectroelectrochemical Detection to Improve the Sensitivity of the Shear Enhanced Lab on a Chip Device

Shweta Burgula

Consider this *Scenario*

The Lab on a Chip

Detect molecular indicators of disease called biomarkers

Qualities of Good Testing

- Sensitivity: Detecting all of the molecules present in the sample.
- Selectivity: Differentiating between different molecules

Shear Enhanced Lab on a Chip

The addition of CNT greatly enhances accuracy.

Sensitivity and Selectivity in the Shear Enhanced Chip

Laminar Flow

Turbulent Flow

Modifying for Optical Detection

Strong optical properties

02 Retain electrical response

Assembling the Chip

- Redesigned the chip
- Replaced CNT with ReS₂
- Find appropriate packing density

Li 2019

Testing the Chip

Testing the Chip

5

Concentrations of KCl

Voltages, 100-500mV

Configurations in the machine

Results

Results

KCl 10^-4 M, 200 mV

Future Works

- Repeat the experiment without light
- Functionalize ReS₂
- Analyze optical absorbance and electrical resistance after functionalizing

Conclusions

- Current lab on a chip devices are lacking in high selectivity and sensitivity
- Adding a secondary method of testing can improve sensitivity
- ReS₂ is a ideal due to its versatile optical properties and ability to act as a dielectric

Acknowledgements

This material is supported by NSF grant # 1751795 "CAREER: "ASSURED" electrochemical platform for multiplexed detection of Cancer Biomarker Panel using Shear-Enhanced Nanoporous Capacitive Electrodes" to PI Sagnik Basuray.

This work was done at NJIT under the guidance of Zhenglong Li and Dr. Sagnik Basuray.

References

- Zhenglong Li, Yu-Hsuan Cheng, Lixin Feng, and Sagnik Basuray et al. "Electrochemical Impedance Signature of a Non-planar, Interdigitated, Flow-through, Porous, Carbon-based Microelectrode". Journal of the Electrochemical Society 166 (2019): B1669-B1672.
- Yu-Hsuan Cheng, Reis Moura Pedro Antonio, Li Zhenglong, and Sagnik Basuray et al. "Effect of electrode configuration on the sensitivity of nucleic acid detection in a non-planar, flow-through, porous interdigitated electrode". Biomicrofluidics 13, no. 6 (2019): 064118.

Conclusions

- Current lab on a chip devices are lacking in high selectivity and sensitivity
- Adding a secondary method of testing can improve sensitivity
- ReS₂ is a ideal due to its versatile optical properties and ability to act as a dielectric

